
Chapter 16

NEGATIVE-MASS INSTABILITY

Near transition, the slippage factor η decreases rapidly, thus decreasing the revolution

frequency spread coming from the energy spread. Landau damping therefore diminishes

and the beam is subject to instability. Below transition, most proton machines are dom-

inated by space-charge impedance. If the resistive part of the total impedance is small,

the proton bunches should be stable against microwave instability. However, as soon as

transition is crossed, the space-charge force switches sign which together with the vanish-

ingly small value of the slippage factor will drive the beam to instability. This is called

negative-mass instability, the name coming from the fact that particle behavior above

transition are the same as if they are having negative mass. All low-energy proton ma-

chines will suffer from negative-mass instability while crossing transition. However, this

instability grows for a limited time only until the slippage factor η becomes large enough

to damp the instability. If the ring is well-designed so that the time interval of growth and

the growth rate are both small, negative-mass instability just results in a small increase

in bunch area. If the ring is not well-designed, the increase in bunch area will be so large

that the bunch may exceed the bucket height and even the momentum aperture of the

vacuum chamber resulting in beam loss. In a machine like the Fermilab Main Ring where

bunch coalescence is required to feed the Tevatron which is a colliding ring, the growth in

bunch area is especially important. This is because too large a bunch area after transition

will lead to undesirable large bunch area after coalescence, which will in turn lower the

luminosity of the Tevatron.

As was discussed in Sec. 5.3, while the Landau damping rate decreases as η, the

microwave instability growth rate decreases as
√
|η| as well. The growth rate is therefore
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time dependent, thus complicating the calculation of the total amount of growth in bunch

area.

16.1 GROWTH AT CUTOFF

In the absence of space charge or other coupling impedances, the motion of a particle

in the longitudinal phase space can be derived analytically [3] at any time near transition

in terms of Bessel function J 2
3

and Neumann function N 2
3
. With the introduction of space

charge, the growth rate of a small excitation amplitude can be evaluated by integrating

the Vlasov equation when the bunch has either an elliptical or bi-Gaussian distribution in

the longitudinal phase space. The total growth can then be tallied up by small time steps

across transition. Lee and Wang [1] made such a calculation for the Relativistic Heavy

Ion Collider to be built at Brookhaven. The emittance growth was taken as two times the

growth of the excitation amplitude at the cutoff frequency of the beam pipe, and the result

was considered satisfactory. The choice of the cutoff frequency comes from the assumption

that electromagnetic waves emitted by the bunch at higher frequencies will not bounce

back from the beam pipe to interact with the bunch. Wei [2] later studied the emittance

growth of the Alternating-Gradient Synchrotron at Brookhaven using similar approach.

His simulation showed that the emittance blowup had been very much overestimated.

Wei pointed out that the bunch emittance had been kept constant by Lee and Wang

in the computation of the growth for each time step. The bunch emittance was in fact

growing and would provide more Landau damping to counteract the instability. With the

emittance update at each time step, he found the numerical calculations agree with the

simulations.

16.1.1 SIMPLE MODEL

With some suitable assumptions, the model of Lee-Wang-Wei can be made analytic,

resulting in some simple formulas for easy estimation [3]. First, let us begin with the

dispersion relation derived in Chapter 5 for the revolution harmonic n:

1 = −
(

∆Ω0

n

)2 ∫
F ′(ω)

∆Ω/n− ω dω , (16.1)

where ∆Ω = Ω − nω0 is the coherent angular frequency shift, Ω the coherent angular

frequency of the instability, and ω0 the revolution angular frequency. In above, ∆Ω0 is
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the coherent frequency shift without Landau damping, which can be expressed as(
∆Ω0

n

)2

=
ieηω2

0Ipk

2πβ2E

Z
‖
0

n
, (16.2)

and F (ω) is the revolution-frequency distribution of the beam,

F (ω) =
1√

2πσω
e−ω

2/(2σ2
ω) , (16.3)

with

σω =
|η|ω0

β2E
σE (16.4)

the rms angular frequency spread in the bunch, σE the rms energy spread, and Ipk =

eNb/(
√

2πστ) the peak current of the bunch of Nb particles and rms length στ = 1/σω.

Dimensionless variables are now introduced,

u =
ω

σω
, z =

∆Ω

nσω
, (16.5)

and the dispersion relation takes the form

1 = −
(

∆Ω0

n

)2 ∫
G′(u)

z − u du , (16.6)

with

G(u) =
1√
2π

e−u
2/2 . (16.7)

Again, we assume the slippage factor η to be linear in time near transition as given by

η

E
=

2γ̇t
γ4
t
E0

t =
eVrfω0 sinφs
πγ4

t
E0

t , (16.8)

where t is the time measured from the moment transition is crossed, E0 the rest energy

of the beam particles and Vrf the rf voltage. We get, from Eqs. (16.2), (16.6), and (16.8),

1 = −ia
t

∫
G′(u)

z − udu , (16.9)

where

a =
eNb(Z

‖
0/n)β2γ4

t
E2

0

2
√

2πω0στσ2
EVrf sinφs

, (16.10)
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is a slowly varying function of t. Written in this form, all accelerator and bunch parameters

have been embedded in the variable a and integral in Eq. (16.9) becomes machine and

beam independent.

Next, we want to compute the time t0 when η increases to such a value that stabil-

ity is regained. There are two simple situations. The first one is when the longitudinal

impedance is purely space charge or capacitive. Therefore, the parameter a is positive

imaginary number or −ia is real and positive. This corresponds to Point A on the thresh-

old curve shown in Fig. 16.1. Solution of the dispersion relation, Eq. (16.9), for the

Figure 16.1: The threshold dispersion curve for Gaussian distribution. Point A
corresponds to the situation where the longitudinal impedance is purely capacitive
such as space charge. Point (b) corresponds to the situation where the longitudinal
impedance is purely real such as the peak of a broad resonance.

threshold is simply z = +iε where ε is a positive infinitesimal real number. The integral

can be performed easily and we obtain

t0 = −ia(t0) . (16.11)

We now make the approximation that a(t) ≈ a(t0). The quantities of largest variation

with time in a(t) are στ and σE. It turns out that t0 in most cases is of the order of the
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non-adiabatic time Tc or larger, so that the bunch area, which is conserved, is close to

S = 6πστσE. Thus a(t) ∝ στ . We notice from Eqs. (15.19) and (15.54) that the variation

of στ from t = 0 to t = Tc is at most ∼ 10%. Therefore, the approximation should be

valid. With this approximation, we can compute from Eq (16.9) the growth rate at other

time t = t′t0, where 0 ≤ t′ ≤ 1. The equation to solve is

t′ =

∫
G′(u)

z − u du . (16.12)

The solution is simple because the imaginary part of the right side has to vanish, leading

to z = iy, where y is real. We obtain

t′ = 1−
√
π

2
y ey

2/2 erfc

(
− y√

2

)
, (16.13)

where erfc(x) = 1 − erf(x) is the complimentary error function. The integrated growth

per harmonic is given by

S+

n
=

∫ t0

0

Im ∆Ω

n
dt = t0

∫ 1

0

σω Imz dt′ =
σEeVrf sin φsω2

0t
2
0

πβ2
t γ

4
t
E2

0

∫ 1

0

t′ Imz dt′ . (16.14)

In Fig. 16.2(a), we plot t′ Imz as a function of t′ with the aid of Eq. (16.13). The last

integral in Eq. (16.14) is 0.10346. With the aid of Eqs. (16.10) and (16.11), the integrated

growth per harmonic becomes

S+

n
= F spch

1 στ

(
e2Nb|Z‖0/n|βtγ2

t
E0

)2

S3eVrf sinφs
, (16.15)

where the constant is machine independent and is given by

F spch
1 = 27π

∫ 1

0

t′ Imz dt′ = 8.776 . (16.16)

In above, we have used the fact that the 95% bunch area is S ≈ 6πστσE, since t0 & Tc.

The rms bunch length στ will be evaluated using Eq. (15.52).

Another possibility to have a simple formula is to assume Z
‖
0/n to be purely real,

for example at the peak of a broad resonance. Now the variable a in Eq. (16.9) is real

and positive. Therefore, we require the real part of the dispersion integral to vanish. To

derive the time t0 where the beam regains stability, we seek the solution z = x+ iε, where

ε is a positive infinitesimal number. We find that x satisfies

1− x√
2
e−x

2/2

∫ x/
√

2

0

et
2

dt = 0 . (16.17)
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Figure 16.2: Plot of t′ Imz, which is proportional to the growth rate as a function
of normalized time t′ = t/t0, where t is measured from the moment when transition
is crossed (t < 0 below transition and t > 0 above transition), and t0 is the time
when the slip factor η becomes large enough so that stability is achieved. Plot (a)
is the situation when the longitudinal impedance is purely capacitance like space
charge. Plot (b) is the situation when the longitudinal impedance is purely real like
the peak of a broad resonance. Note that there is no growth below transition when
the impedance is purely capacitive.

This gives x/
√

2 = 0.69729 or

t0 = 0.697285a(t0) . (16.18)

Again, we approximate the problem by evaluating a(t) at t0. Substituting back into the

dispersion relation, the Eq. (16.9) becomes

0.697285 t′ = −i
∫
G′(u)

z − u du = −i
[
1 + i

√
π

2
z w

(
z√
2

)]
, (16.19)

where t′ = t/t0 and w(z) is the complex error function. Next we need to relate the growth

rate, which is proportional to Imz, to the time t′ before stability is regained. For each

value of y = Imz, we require

1− Im
[√

π

2
z w

(
z√
2

)]
= 0 , (16.20)
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by solving for x, where z = x + iy. This has to be solved numerically. The relation of

t′ Imz as a function of t′ is plotted in Fig. 16.2(b). The area under the growth-rate curve

is 0.211765 for 0 ≤ t′ ≤ 1. Unlike the situation of a purely capacitive impedance, there is

microwave growth both after and before transition. In this particular model of a purely

real impedance, the growth is symmetric about the time when transition is crossed. The

integrated growth above transition per harmonic S+/n is exactly the same expression in

Eq. (16.15) when the constant F spch
1 replaced by another universal constant F real

1 , where

F real
1 = 27π(0.697285)2

∫ 1

0

t′ Imz dt′ = 27π(0.697285)2(0.211765) = 8.734 , (16.21)

which happens to be very close to F spch
1 . The integrated growth per harmonic S−/n below

transition is exactly equal to S+/n.

When the condition that Z‖0/n is purely reactive or real is relaxed, the solution of

the dispersion relation will not be so simple. The result can also be expressed in the form

of Eq. (16.15). The numerical constant F1 will deviate from F spch
1 and F real

1 . Also there

will be a different F1 for a different phase in Z
‖
0/n.

Here, we will apply these formulas to the Fermilab Booster, Main Ring, and Main

Injector, as listed in Table 16.1. Since the total growth is exponential, it is very sensitive

to the bunch area, impedance, number per bunch, and the growth harmonic. Even a

factor of two decrease in the bunch area or a factor of two enhancement in one of the

other quantities can increase the the total growth tremendously. Notice that some total

growths are more than 10000 fold. But this is only the growth of a spectral component

and it is not easy to relate it to the growth of the bunch area. For this reason, the theory

of growth at cutoff is not so enlightening. We will analyze all the shortcomings of the

model and study the model of Hardt [6], which may provide a more reasonable criterion

of instability.

16.1.2 SHORTCOMINGS

In order to discuss the shortcomings of the Lee-Wang-Wei method, let us first review

some theory of the negative-mass instability. If we ignore Landau damping, the growth

rate at peak current Ipk at the revolution harmonic n is given by

G(n, t) = nω0

(
ηeIpk|Z‖0/n|spch

2πβ2γE0

)1/2

, (16.22)
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Table 16.1: Growth-at-cutoff theory applied to the Fermilab Booster, Main Ring,
and main Injector when the impedance is purely space charge or purely resistive.

Booster Main Ring Main Injector

95% Bunch Area S 0.025 0.15 0.15 eV-s

Number per bunch Nb 3× 1010 3× 1010 6× 1010

Beam pipe radius 5.00 3.50 2.66 cm

Non-adiabatic time Tc 0.216 3.00 2.14

Cutoff harmonic n 1510 28600 19900

Cutoff frequency 0.938 1.36 1.79 GHz

Purely Space Charge

|Z‖0/n|spch 30.0 2.63 1.72 Ohms

t0 2.23 2.30 2.71 ms

στ at t0 0.463 0.342 0.251 ns

Growth rate per harmonic S+/n 0.00619 7.40× 10−6 2.10× 10−5

Growth index S+ 9.35 0.203 0.416

Total growth exp(S+) 11400 1.23 1.52

Resistive Impedance

Z
‖
0/n 15.0 10.0 1.6 Ohms

t0 0.549 8.58 1.52 ms

στ at t0 0.326 0.475 0.217 ns

Growth rate per harmonic S+/n 0.000125 1.66× 10−5 1.78× 10−6

Growth index S++S− 3.30 8.31 0.619

Total growth exp(S++S−) 27.0 4060 1.86

where E0 is the particle rest energy, η the slippage factor, t the time measured from the

moment of transition crossing, and the space-charge impedance given by[
Z
‖
0

n

]
spch

= i
Z0g

2βγ2
. (16.23)

Here, Z0 ≈ 377 ohms is the free-space impedance, γ and β the relativistic parameters

of the bunch particle at or near transition, and g the space-charge geometric parameter,

which has been derived in Sec. 4.2 at low frequencies as

g0 = 1 + 2 ln
b

a
, (16.24)
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where a is the beam radius and b the beam pipe radius. A more accurate derivation

which is valid for high frequencies has been given by Keil and Zotter [7] in terms of Bessel

functions. The result of Eq. (16.24) arrives from the expansion of the Bessel functions

at zero frequency. At frequencies of the order γc/b, γc/a, or higher, the space-charge

geometric parameter g rolls off. When b/a is not too big, numerical fittings show that

g(n) can be approximated by

g(n) =
g0

1 + (n/n 1
2
)2
, (16.25)

with the half-value harmonic given roughly by

n 1
2

= γR

(
1.6

b
+

0.52

a

)
, (16.26)

where R is the radius of the accelerator ring. It is clear from Eq. (16.22) that at frequen-

cies below the roll-off of the space-charge impedance, the growth rate for negative-mass

instability is directly proportional to the harmonic n. It will be showed later in Eq. (16.56)

that, when Landau damping is taken into account, the growth rate will be modified and

the integrated growth becomes ∫ t0

0

G(n, t) dt ∝ ng2(n) , (16.27)

where t0 is the time after crossing transition when the slip factor η becomes large enough

so that stability is restored. Thus, the integrated growth exhibits a maximum at nmax =

n 1
2
/
√

3. Taking as an example the Fermilab Main Ring, which has a radius of 1 km and

transition gamma γt = 18.8, this corresponds to 77.6 GHz when a = 5 mm and b = 35 mm.

On the other hand, the cutoff frequency is only about 1.36 GHz. For a typical cycle at

an intensity of 3 × 1010 per bunch and emittance 0.15 eV-s, the total growth across

transition due to the space-charge impedance for a spectral line is 1.74× 105 times at the

former frequency but only 1.23 at the latter frequency. Similarly, the maximum integrated

negative-mass growths for the Fermilab Main Injector and the Fermilab Booster occur at

98.5 and 23.9 GHz, respectively. As a result, it is difficult to justify the correctness of

the description of Lee-Wang-Wei. In addition, in Wei’s simulation, the bunch was divided

into bins with the bin width equal to the cutoff wavelength of the beam pipe. In other

words, all large-growth-rate amplitudes at high frequencies had been neglected. Here,

we want to point out that the first simulation across transition to exhibit negative-mass

instability was done by Lee and Teng [4] on the Fermilab Booster, where they also divided
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the bunch up into cutoff wavelengths only. Later, similar simulations on the same booster

were performed by Lucas and MacLachlan [5], and they also failed to include the high-

frequency amplitudes.

Measurements were made near transition for the Fermilab Main Ring [8]. The top

row of Fig. 16.3 displays the observed signals around transition at frequencies 4, 5, and

6 GHz for proton bunches with initial longitudinal emittance 0.07 eV-s and 2.3 × 1010

protons. The units on the vertical axis are 5 db per division and on the horizontal axis

2 ms per division. The transition time is marked with an arrow. As seen in the figure,

the signals are getting stronger and more persistent with increasing frequency as expected

from the negative-mass instability. In this case, the longitudinal emittance after transition

was 0.25 eV-s corresponding to a blowup of 3.6. Next a phase mismatch at injection was

introduced to blowup the longitudinal emittance from 0.06 to 0.10 eV-s. The lower row

of Fig. 16.3 displays the signals observed at 5.0 GHz, with two different longitudinal

emittances before transition. As expected, the 5.0 GHz signal is smaller for the bigger

longitudinal emittance, and dies away faster compared to the signal in the case with the

smaller emittance. The emittance blowup at transition is also much smaller for the bigger

initial emittance, a factor of 2 compared with 3.7.

One may raise the question that a typical proton bunch which is usually much longer

than the radius of the beam pipe will have a spectrum not much higher than the cutoff

frequency. In order to have a growth at harmonic n = nmax or n 1
2
, the original amplitude

or the seed of the growth has to be supplied by Schottky noise, which is extremely small, so

that the growth effect to the bunch at such high frequencies may or may not be significant.

This question will be discussed in Sec. 16.2.1 below, after we go over the Schottky-noise

model of Hardt [6].

16.2 SCHOTTKY-NOISE MODEL

Hardt assumed that the seeds of the negative-mass growth are provided by the sta-

tistical fluctuations of the finite number of particles Nb within the bunch on top of a

smooth linear profile distribution F (∆φ), where ∆φ is the rf phase offset measured from

synchronous angle. The smooth distribution F (∆φ) has an average of unity but is nor-

malized to 2∆̂φ, the total bunch length. The bunch is divided into M bins in the rf

phase coordinate ∆φ. There are NbF (∆φ)/M particles in the bin at ∆φ, and each bin

has a width 2∆̂φ/M . Due to the statistical fluctuations, the mth bin contains δNm extra
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Figure 16.3: Top row: negative-mass signals at 4.0, 5.0, and 6.0 GHz for bunches
with emittance of 0.07 eV-sec and 2.2× 1010 protons. The signals are stronger and
more persistent with increasing frequencies. The arrow marks the transition time.
Lower row: negative-mass signals at 5.0 GHz for bunches with the same intensity
but with longitudinal emittances 0.06 and 0.10 eV-s. The signals are smaller for the
larger emittance.

particles. So a step function f(∆φ, t), which is a perturbation to F (∆φ), can be defined:

f(∆φ, t) =
δNm

∆N
if

m−1

M
<

∆φ+ ∆̂φ

2∆̂φ
<
m

M
, (16.28)

where ∆N = Nb/M is the average number of particles in a bin. The function can be

expanded in a Fourier series

f(∆φ, t) =

∞∑
kb=−∞

ckb(t)e
i2πkb∆φ/(2c∆φ) , (16.29)
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where

ckb(t) =
1

2∆̂φ

∫
c∆φ

−c∆φ
f(φ, t)e−i2πkb∆φ/(2

c∆φ)d∆φ , (16.30)

and c0(t) = 0 because of charge or particle conservation. Notice that the expansion has

been made in bunch modes kb, or the number of wavelengths in a wave that can reside

in a bunch with periodic boundary condition at ±∆̂φ. It should not be confused with

the revolution harmonic n, which is the number of wavelengths in a wave around the

circumference of the accelerator ring. The two are, however, related to each other by

kb
n

=
2∆̂φ

2πh
, (16.31)

where h is the rf harmonic. If we work with waves that vanish at the ends of the bunch or

±∆̂φ, we need only to include positive integral kb which represents the number of nodes

in the waves across the bunch. However, we are working here with waves that satisfy

periodic boundary conditions at ±∆̂φ; we need to include all integral kb, positive and

negative.

Let us compute the statistical expectation

E
[
|ckb(0)|2

]
=

1

(2∆̂φ)2

∫
c∆φ

−c∆φ
d∆φ

∫
c∆φ

−c∆φ
d∆φ′E

[
δNmδNn

(∆N)2

]
ei2πkb(∆φ−∆φ′)/(2c∆φ) . (16.32)

Initially, without any contamination of instability, the statistical fluctuations in the bins

are random, or

E
[
δNmδNn

]
= δmn 2∆̂φ∆NF (∆φ) , (16.33)

where the right side is the expected number of particles in the mth bin, in which F (∆φ)

is to be evaluated. This means that both ∆φ and ∆φ′ have to be in the same bin in order

to be nonvanishing. If we neglect the small fluctuation of the phase inside a bin, we can

perform the integration over d∆φ′, which just gives the width of the bin. What is left

behind in Eq. (16.32) becomes trivial, and we readily get

E
[
|ckb(0)|2

]
=

1

(2∆̂φ)2

∫
c∆φ

−c∆φ

F (∆φ)

∆N

2∆̂φ

M
d∆φ =

1

Nb
. (16.34)

This result is important because it is independent of mode number kb and the number

of bins M , otherwise the model will become meaningless. This also explains why F (∆φ)
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has been defined to have an average of unity. The evolution of each mode amplitude ckb
is

|ckb(t0)| ≈
1√
Nb

exp

∫ t0/Tc

0

G(n, x) dx , (16.35)

where G(n, x), the growth per unit x = t/Tc with Tc being the non-adiabatic time. It will

be derived below in exactly the same way as what we did in the growth-at-cutoff model.

The integration is up to time t0 when the growth rate decreases to zero as the slippage

factor η increases.

Hardt employed an elliptical initial particle distribution in the longitudinal phase

space,∗

ψ(∆φ,∆E) =
3

2π∆̂φ∆̂E

√
1− ∆φ2

∆̂φ
2 −

∆E2

∆̂E
2 , (16.36)

so that the linear distribution

ρ(∆φ) =
3

4∆̂φ

(
1− ∆φ2

∆̂φ
2

)
(16.37)

becomes parabolic. The offset of angular revolution frequency ∆ω = ω − ω0 from that of

the synchronous particle is related to the energy offset ∆E by

∆ω = − ηω0

β2γE0
∆E . (16.38)

Therefore, at a point ∆φ1 along the bunch profile, the distribution in ∆ω is

f(∆ω) =
2

π∆̂ω

√
1− ∆φ2

1

∆̂φ
2 −

∆ω2

∆̂ω
2

1− ∆φ2
1

∆̂φ
2

. (16.39)

Starting from the Vlasov equation, a dispersion relation is derived and is given by Eq. (5.16).

For a perturbative wave with revolution harmonic n, the dispersion relation is

1 = −
(

∆Ω1

n

)2 ∫ df(∆ω)/d∆ω

∆Ω/n −∆ω
d∆ω , (16.40)

∗We outline here our understanding of the original paper of Hardt, which is very condensed and is
difficult to read.
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where ∆Ω is the deviation of coherent angular frequency Ω of the collective motion from

nω0. We are working with the revolution harmonic now and will go to bunch modes later.

The factor before the integral can be written as [Eq. (5.16)]

(
∆Ω1

n

)2

=
ieIlocalηω2

0

[
Z‖0 (Ω)/n

]
spch

2πβ2γE0

, (16.41)

where we substitute for the local current

Ilocal =
3eNbω0

4∆̂φ

(
1− ∆φ2

1

∆̂φ
2

)
, (16.42)

and the space-charge impedance [
Z
‖
0

n

]
spch

= i
Z0g(n)

2βγ2
(16.43)

with the geometric factor g(n) given by Eq. (16.25). The result is(
∆Ω1

n

)2

= −3Nbrpgηhω2
0

4β2γ3R∆̂φ

(
1− ∆φ2

1

∆̂φ
2

)
=

(
∆Ω0

n

)2
(

1− ∆φ2
1

∆̂φ
2

)
, (16.44)

where R is the radius of the accelerator ring and rp the classical radius of the beam

particle. Notice that the last factor involving ∆φ1 will cancel the same factor in the

denominator of the distribution function f(∆ω) in the dispersion relation.

Changing the variable of integration from ∆ω to

y =
∆ω

∆̂ω

√
1− ∆φ2

1

∆̂φ
2

, (16.45)

the dispersion relation simplifies to

1 =
2

π

(
∆Ω0

n∆̂ω

)2 ∫ 1

−1

ydy

(α− y)
√

1− y2
, (16.46)

where

α =
∆Ω

n∆̂ω

√
1− ∆φ2

1

∆̂φ
2

. (16.47)
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The integral on the right side of Eq. (16.46) can be readily performed to give −π +

πα/
√
α2 − 1. We therefore obtain

α = ± a√
a2 − 1

, with a = 1 +

(
n∆̂ω√
2∆Ω0

)2

. (16.48)

Now the dispersion relation has been solved. The imaginary part of Ω gives the growth

rate if positive and damping rate if negative. It is clear from Eqs. (16.47) and (16.48)

that the growth rate will be largest at the center of the bunch profile where ∆φ1 = 0.

From now on we are going to concentrate on the bunch center and drop ∆φ1.

The maximum half spread in angular revolution frequency ∆̂ω can be written in

terms of the half bunch length ∆φ via

∆̂ω =
|η|ω0∆̂E

β2γE0
=
|η|ω0Sc

πβγ∆̂φ
, (16.49)

where, for convenience, the dimensionless bunch area Sc = πβ̂γ∆̂φ [Eq. (15.96)] has been

used. Thus, (
n∆̂ω√
2∆Ω0

)2

= − 2ηγRS2
c

3π2rpgNb∆̂φ
. (16.50)

Notice that this is essentially the inverse of the bunch length multiplied by the space-

charge force.

Since we are after the growth of each bunch mode component near transition, all

quantities including the bunch length will be approximated by their values at transition.

Recall that under the assumption of a linear time variation of η/E, we defined in Sec. 15.5

a normalized space-charge parameter ηN0 in Eq. (15.95) and a normalized half bunch

length θ in Eq. (15.94). Here, we want to introduce ηN which is the same as ηN0 with the

exception that the space-charge geometric parameter g0 at zero frequency is replaced by

the more general g(n) which covers high frequencies. With the expression in Eq. (16.50),

it just turns out that (
n∆̂ω√
2∆Ω0

)2

= − x

ηNθ
, (16.51)

where x = t/Tc and Tc is the non-adiabatic time. The maximum half spread in angular

revolution frequency can also be expressed in terms of θ via Eqs. (15.94) and (16.49) as

∆̂ω =
|η|γt
θβt

√
Scω0

2πhγ̇t
=
|x|
θγ2

t
βt

√
2Scω0γ̇t
πh

, (16.52)
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where the linear dependency of η near transition has been used.

With the help of Eqs. (16.47), (16.48), and (16.51), the growth rate (for x > 0) can

be expressed as

ImΩ = n∆̂ω Imα = n∆̂ω

ηNθ

x
− 1√

2ηNθ

x
− 1

. (16.53)

Now substitute for ∆̂ω from Eq. (16.52) and the definition of the non-adiabatic time. We

arrive at the growth per unit x = t/Tc,

G(n, x) = Tc ImΩ =
nηN
h

√
Sc| tan φs|
πγ̇tTc

1− x

ηNθ√
2ηNθ

x
− 1

. (16.54)

As a reminder, on the right side of the above equation, n is the revolution harmonic while

ηN is the normalized space-charge parameter. The accumulated or integrated growth Eacc

is obtained by an integration over x from x = 0 to x = ηNθ when the growth rate drops

to zero (t0 = ηNθTc); or

Eacc(n) =

∫ η
N
θ

0

G(n, x) dx . (16.55)

The integration can be performed easily with the change of variable u = x/(2ηNθ), and

the result is

Eacc(n) =
nη2

N
θ

h

(
1− π

4

)√Sc| tan φs|
πγ̇tTc

. (16.56)

We have computed the accumulated growth of a spectral line with revolution har-

monic n. Since the normalized space-charge parameter ηN is linear in the geometric

parameter g(n) of the space-charge impedance, the dependence on frequency is therefore

Eacc(n) ∝ n(
1 +

n2

n2
1
2

)2 . (16.57)

The maximum is denoted by

Emax =
3
√

3n 1
2
η2
N0θ

16h

(
1− π

4

)√Sc| tan φs|
πγ̇tTc

, (16.58)
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where ηN0 is the same as ηN with the exception of the replacement of g(n) by g0, and

occurs when n = nmax = n 1
2
/
√

3. The accumulated growth Eacc will be exponentiated to

arrive at the total growth for a harmonic.

A criterion for negative-mass instability is required. Hardt made the assertion that

there is no negative-mass blowup if

∞∑
kb=−∞

|ckb(t0)|2 . 1 , (16.59)

where t0 is the time when stability is regained. The meaning of this criterion will be

explored later. From Eq. (16.35), such a criterion is equivalent to

∞∑
kb=−∞

exp
[
2Eacc(kb)

]
. Nb , (16.60)

where Nb is the number of particles in the bunch and the summation is over all possible

bunch modes. Because exp [Eacc] assumes a maximum at n = nmax and falls off rapidly

later, the method of steepest decent will be employed. First, we find that†

Eacc(n) ≈ Emax

1−
(

3∆n

2n 1
2

)2
 , (16.61)

with ∆n = n−nmax. Next, the summation over all the bunch modes is converted into an

integral

∞∑
kb=−∞

exp
[
2Eacc(kb)

]
= exp

[
2Emax

] ∫ ∞
−∞

exp

−2

(
3
√
Emax∆kb
2kb 1

2

)2
 d∆kb , (16.62)

where the bunch mode number kb has been used instead of the revolution harmonic n.

The relation between the two are given by Eq. (16.31). In particular the half-value bunch

mode is

kb 1
2

=
∆̂φ

πh
n 1

2
. (16.63)

The criterion of no blowup can be written as

Emax . Ecrit , (16.64)
†In Eq. (16.61), we obtain [3∆n/(2n 1

2
)]2 for the second order term, while it is [3∆n/(4n 1

2
)]2 in Ref. [6],

which we think is incorrect. Therefore, we are getting slightly different results for Eqs. (16.62), (16.65),
and (16.66).
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where the critical total growth Ecrit is obtained through Eq. (16.60) by equating the right

side of Eq. (16.62) to Nb; or

kb 1
2

3

√
2π

Ecrit
exp

[
2Ecrit

]
= Nb , (16.65)

after performing the Gaussian integration. This is a transcendental equation which can

be solved by iteration, giving

Ecrit ≈
1

2

[
lnNb − ln

(
2kb 1

2

3

√
π

lnNb

)]
. (16.66)

Finally, we will write out the criterion of no negative-mass blowup, Eq.(16.64), in

terms of the more familiar parameters of the accelerator ring and the particle bunch.

First, let us list the relevant expressions. They are the normalized space-charge parameter

at zero frequency

ηN0 =
3π2Nbrpg0h

2RS3/2
c

√
hω0

2πβtγ̇t
=

3π2Nbrpg0

2RS3/2ω0

√
E3

0β
2
t

2πγ̇t
, (16.67)

and the normalized half bunch length at transition

θ =

√
πβtγ4

t

2hω0γ̇tT
2
c Sc

∆̂φ =
2
√
π

31/3Γ
(

1
3

) = 0.91749 . (16.68)

where the conversion, Sc/S = hω0/(βtE0) has been used. Substituting into the expression

for Emax in Eq. (16.58), the threshold for no negative-mass blowup [Eq. (16.64)] can be

formulated by introducing a critical parameter c less than unity in the following expression:

ξ nmax

(rp
R

)2
(

E
5/2
0 β

7/6
t

h1/3ω4/3
0 γ2/3

t

)(
N2
b g

2
0 | tan φs|1/3

S5/2γ̇7/6
t

)
= cEcrit . (16.69)

When the critical parameter c < 1, there is no blowup. In above, the coefficient ξ is

ξ =
325/6π2Γ

(
2
3

)
241/6

(
1− π

4

)
= 2.44656 , (16.70)

where Γ
(

2
3

)
= 1.354118 is the Gamma function, rp the classical proton radius, E0 the

proton rest energy, R the ring radius, g0 the geometric space-charge parameter at zero

frequency, S bunch area in eV-s, φs the synchronized rf phase, γt the transition gamma,
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γ̇t the rate at which transition is crossed, nmax the revolution harmonic at which the

accumulated growth is a maximum, which is related to the half-value revolution harmonic

by nmax = n 1
2
/
√

3, and kb 1
2

the half-value bunch mode which is given by kb 1
2

= n 1
2
∆̂φ/(πh).

We have written Eq. (16.69) in such a way that the last factor on the left side pertains

to the properties of the beam while the two factors in front pertain to the properties of

the accelerator ring.

Some comments are in order:

(1) The critical condition
∑

kb
|ckb(t0)|2 = 1 implies, through Parseval theorem, that

1

2∆̂φ

∫
|f(∆φ, t0)|2d∆φ = 1 . (16.71)

From the definition of the function f(∆φ), the above integral can be re-written as sum-

mation over the M bins,∑
m

(
δN

∆N

)2

m

(∆φ)b

2∆̂φ
=
∑
m

(
δN

∆N

)2

m

1

M
, (16.72)

where ∆N is the average number of particles inside each bin and (∆φ)b is the width of

the bin. Then Eq. (16.71) becomes∑
m (δN)2

m

M
= (∆N)2 . (16.73)

Thus, the assertion of a negative-mass blowup is equivalent to the situation when the rms

fluctuation in each bin is comparable to the average number of particles in each bin, which

is really a large particle fluctuation or a big blowup in the bunch. This blowup implies

violent changes in the bunch, such as a total bunch breakup. However, the assertion of

Eq. (16.59) is a bit hand-waving, because even when the rms fluctuation is much less than

∆N , there can be a big blowup of the bunch emittance already. Hardt’s paper provides

no recipe to compute the increase in bunch emittance in this regime.

(2) The derivation so far has been a perturbative approach. Here, we want to examine

its validity. The perturbation expansion is, in fact,

F (∆φ) + f(∆φ, t) = F (∆φ) +
∞∑

kb=−∞
ckb(t)e

i2πkb∆φ/(2c∆φ) , (16.74)

where F (∆φ) is the smooth linear profile distribution and f(∆φ, t) represents the fluc-

tuation from the smooth distribution. Notice that the unperturbed distribution F (∆φ)
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has an average of unity. Since Hardt only studied the situation of no blowup or when the

fluctuation function f(φ, t), as demonstrated in Eq. (16.71), has a rms of less than unity,

the perturbation is therefore justified although the amount of growths of the ckb ’s from

t = 0 to t = t0 are tremendous.

We are going to apply this Schottky-noise model to the Fermilab Main Ring, where

many properties have been listed in Tables 15.1 and 16.1. Here, we want to study the

negative-mass instability when the ramping rate across transition is γ̇t = 90.0 s−1. Ta-

ble 16.2 lists the computed critical parameter c for a bunch of Nb = 2.2 × 1010 protons

and a bunch of 4.0× 1010 protons for various bunch areas according to Eq. (16.69). The

half bunch length is evaluated right at transition. This is also plotted in Fig. 16.4. We

see that the parameter c increases very fast as the bunch area shrinks to a certain size. In

any case, there should not be any negative-mass blowup when the bunch area is around

0.15 eV-s, as demonstrated by experiment. Similar plots for the Fermilab Main Injector

and Booster are shown in Figs. 16.5 and 16.6.

Table 16.2: Critical parameter c for negative-mass instability for a proton bunch in
the Fermilab Main Ring with Nb = 2.2×1010 or 4.0×1010 particles. The ramp rate
across transition is γ̇t = 90.0 s−1. A value of c & 1 implies negative-mass blowup.

Bunch area Half bunch width Nb = 2.2× 1010 Nb = 4.0× 1010

(eV-s) (ns) c Ecrit c Ecrit

0.040 0.439 3.84 10.23 12.70 10.54

0.050 0.490 2.21 10.18 7.31 10.48

0.060 0.537 1.41 10.13 4.65 10.44

0.070 0.580 0.96 10.09 3.18 10.40

0.080 0.620 0.69 10.06 2.28 10.36

0.100 0.693 0.40 10.00 1.31 10.31

0.120 0.760 0.25 9.96 0.84 10.26

0.140 0.820 0.17 9.92 0.57 10.22

0.160 0.877 0.12 9.89 0.41 10.19

0.180 0.930 0.09 9.86 0.31 10.16

0.200 0.981 0.07 9.83 0.24 10.13

0.220 1.028 0.06 9.81 0.19 10.11

0.240 1.074 0.05 9.78 0.15 10.09
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Figure 16.4: Plots showing the critical negative-mass parameter c as a function of
the Fermilab Main Ring bunch area for bunches with Nb = 2.2×1010 and 4.0×1010

protons. The ramp rate across transition is γ̇t = 90.0 s−1. Negative-mass blowup
occurs when c & 1.

Figure 16.5: Plots showing the critical negative-mass parameter c as a function
of the Fermilab Main Injector bunch area for bunches with Nb = 4.0 × 1010 and
6.0 × 1010 protons. The ramp rate across transition is γ̇t = 160.1 s−1. Negative-
mass blowup occurs when c & 1.
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Figure 16.6: Plots showing the critical negative-mass parameter c as a function of
the Fermilab Booster bunch area for bunches with Nb = 3.0 × 1010 and 6.0× 1010

protons. The ramp rate across transition is γ̇t = 406.7 s−1. Negative-mass blowup
occurs when c & 1.

16.2.1 COMPARISON OF GROWTHS AT CUTOFF AND

HIGH FREQUENCIES

For a parabolic bunch, the unperturbed linear distribution is

F (∆φ) =
3

2

(
1− ∆φ2

∆̂φ
2

)
, (16.75)

which is normalized to have an average of unity. It is expanded in a Fourier series at

t = 0,

F (∆φ) =
∞∑

kb=−∞
ākb(0)ei2πkb∆φ/(2

c∆φ) , (16.76)

where the mode amplitude is, for kb > 0,

akb(0) = ākb(0) + ā−kb(0) =
3

π2

(−1)kb+1

k2
b

. (16.77)

The bunch mode number kb which corresponds to the cutoff harmonic ncutoff = R/b, with

R and b being, respectively, the radii of the ring and the beam pipe, can be estimated
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Table 16.3: Final fluctuation power spectra at cutoff and high-frequency Schottky
harmonics.

γ̇t Nb Initial Bunch Emittance Final Power Spectrum of Fluctuation

(s−1) (1010) (eV-s) at ncutoff at nmax sum

90 2.2 0.05 3.70 1.50× 109 4.03× 1010

90 2.2 0.06 2.21 1.08× 102 3.97× 103

90 2.2 0.07 1.67 1.19× 10−2 5.74× 10−1

90 2.2 0.08 1.41 4.86× 10−5 2.93× 10−3

90 2.2 0.09 1.26 1.41× 10−6 1.06× 10−4

120 4.0 0.06 7.44 4.37× 1018 1.00× 1020

120 4.0 0.07 3.80 1.94× 109 5.83× 1010

120 4.0 0.08 2.54 4.40× 103 1.67× 105

120 4.0 0.09 1.95 1.02× 100 4.76× 101

120 4.0 0.10 1.64 3.57× 10−3 2.00× 10−1

using Eq. (16.31). Then, the final value of a power spectral line can be computed:

|akb(t0)|2 = |akb(0)|2 exp

[∫ t0/Tc

0

2G(ncutoff , x)dx

]
. (16.78)

The results are listed in Table 16.3 for various run cycles of the Fermilab Main Ring.

The beam pipe radius and the beam radius are kept fixed at b = 35 mm and a = 5 mm,

respectively. The synchronous phase is 60◦. Alongside, we have also tabulated the final

size of the Schottky power spectral line at the high harmonic nmax according to Eq. (16.35).

The sum of all the Schottky power spectral modes has been derived in Eqs. (16.35),

(16.62), and (16.65) to be

∞∑
kb=−∞

|ckb(t0)|2 ≈ |ckb(t0)|2n=nmax
×
kb 1

2

3

(
2π

Ep

) 1
2

, (16.79)

where

Ep =

∫ t0/Tc

0

G(nmax, x)dx (16.80)

is the integrated growth at the peak harmonic nmax. This is also listed in the last column

of the table.

We can see that the Hardt’s blowup criterion of Eq. (16.59) appears to be critical,
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where the growth changes tremendously. When that criterion is exceeded, the Schottky

modes are always larger than the mode at cutoff, showing that the inclusion up to cutoff

frequency is inadequate. On the other hand, below the blowup limit, the mode at cutoff

is larger than the high-frequency Schottky modes, implying that there should be modest

emittance growth below the Hardt’s blowup limit. However, this does not tell us how

large the emittance growth is. It will be best if we can sum up the final power spectrum

of the bunch distribution:∑
kb

|akb(t0)|2 =
∑
kb

9

π4k4
b

exp
[
integrated growth

]
. (16.81)

Unfortunately, this sum is divergent because the integrated growth is directly proportional

to kb. Even when we take into account of the space-charge roll-off, the sum still becomes

unreasonably large. The reason behind this is the breakdown of the linear perturbation

when the perturbed spectral mode becomes larger than the unperturbed one. As a result,

it remains unclear whether the high-harmonic Schottky noise is dominating in the growth

of the bunch emittance. A simulation seems to be the best solution.

16.2.2 DIFFICULTIES IN SIMULATION

A simulation of the negative-mass instability is not trivial. There are two main

difficulties:

(1) Inclusion of high-frequency components

The growth of the Schottky noise peaks at nmax, which corresponds to roughly 78 GHz

for the Fermilab Main Ring, while the half-value space-charge roll-off harmonic n 1
2

corre-

sponds to 134 GHz. Therefore, in simulations we need a bin size of about 1/(2× 134) or

0.00373 ns. The tracking code ESME [9] developed at Fermilab divides the whole rf wave-

length or 18.8 ns up into 2n bins where n is an integer, and the number of bins will have

to be at least 4096 which is too large. As a rule of thumb, the bins should have a width

less than a/γ, where a is the beam radius. Simulations of the Main Ring across transition

had been performed using ESME. As we increase the bin number from 128 to 256 and

512, we do see self-bunching in the phase plot corresponding to the highest frequency of

3.40, 6.81, and 13.6 GHz, respectively, in each of the situations, as illustrated in Fig. 16.7.

This suggests that the negative-mass growths at the high Schottky frequencies do play

a role across transition [10]. In an actual simulation, the space-charge force is usually

implemented by a differentiation of the bunch profile. To maintain the same numerical
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accuracy, we need to follow the “three-in-one rule,” [11] which states that whenever the

bin width is reduced by a factor of 2, the number of macro-particles needs to be increased

by a factor of 23. As a result, the tracking time will increase by a factor of 24.

However, a typical Main Ring bunch has a full length of only 1 ns at transition. If

we divide just two or three times the bunch region into bins, there will be only 256 or

512 bins, which will reduce the tracking time drastically. S6orenssen [12] had successfully

performed simulation with a bin width of a/γ. But he did not overcome the second

difficulty that we are going to discuss next.

(2) The right amount of Schottky noise

In a simulation of microwave instability, there is usually ample time for the instability

to develop to saturation. Therefore, we do not care so much about the size of the initial

excitation or seed of the growth. Across transition, however, the bunch is negative-mass

unstable only for a short time until the frequency-flip parameter η becomes large enough

to provide enough Landau damping, and this time is typically of the order of the non-

adiabatic time, which is about 3 ms for the Fermilab Main Ring. Therefore, the initial

excitation amplitude needs to be tailored exactly. To have the exact Schottky noise level,

we need to use in the simulation micro-particles instead of macro-particles. The Fermilab

Main Ring bunch has typically Nb = 2.2×1010 particles, which is certainly unrealistically

too many in a simulation.

A suggestion is to populate the bunch by NM macro-particles according to a Ham-

mersley sequence [13] instead of randomly. This is a population according to some pattern

so that the statistical fluctuation will become much less. In fact, the number of particles

in each bin in excess of the smooth distribution will become O(1) initially, or the fluctu-

ation function defined in Eq. (16.28) starts from f(∆φ, 0) ≈ 1/∆NM = M/NM , where M

is the number of bins and ∆NM = NM/M is the average number of macro-particles per

bin. The expectation of the initial bunch mode amplitude turns out to be

E
[
|ckb(0)|2

]
=

M

N2
M

. (16.82)

Comparing with Eq. (16.34) for a randomly distributed bunch, the required number of

macro-particles becomes

NM = (MNb)
1
2 , (16.83)

which is more reasonable (∼ 2.4 to 3.6× 106), but may be still too large to be managed

in a simulation.
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Figure 16.7: ESME simulations of a Fermilab Main Ring bunch containing 4×1010

particles with initial emittance of 0.1 eV-sec just after transition with (a) 256 bins
and (b) 512 bins in an rf wavelength; 20,000 and 160,000 macro-particles have been
used in the two cases. Excitations of 6.81 and 13.6 GHz corresponding to the
respective bin widths are clearly seen in the two plots.
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There are, however, two other difficulties with the Hammersley-sequence method.

With ∆φ inside the mth bin, the step function f(∆φ, t) has an initial expectation of

E
[
f2(∆φm, 0)

]
=
M2

Nb
F (∆φ) , (16.84)

which is proportional to the initial unperturbed bunch distribution F (∆φ) and ∆N =

Nb/M is the average number of micro-particles in each bin. Now it changes to, for the

Hammersley population, E[f2(∆φ, 0)] = (M/NM )2 which is independent of F (∆φ). Thus,

the relative fluctuations in the bins cannot be made to resemble those in the randomly

populated bunch, and the initial fluctuation spectrum would have been altered.

In order to have the bunch to fit the space-charge modified rf bucket before transition,

we usually switch on the space-charge force adiabatically over many synchrotron periods

so that the initial populated bunch emittance will be preserved. However, the favored

Hammersley statistics can often be lost after several synchrotron oscillations. A test was

performed with 2 × 105 particles in a truncated bi-Gaussian distribution. The bunch

was projected onto one coordinate, where it was divided into 20 equal bins. To simulate

synchrotron oscillation, the bunch was then rotated in phase space with an angular velocity

which decreases linearly by 1% from the center to the edge of the bunch. The fluctuation or

number of particles in excess of the smooth projected Gaussian distribution in each bin was

recorded for every rotation, and the rms was computed. The results are plotted in Fig. 16.8

as a function of rotation number. We see that although the rms fluctuation starts from

7 initially, it increases rapidly to ∼ 12 after 5 rotations, ∼ 20 after 20 rotations, and will

approach its statistical value of 100 eventually. This might have been an overestimation,

because the actual decrease in synchrotron frequency is not linear and the decrease near

the core of the bunch where most particles reside is very much slower. Nevertheless, this

test gives us an illustration of restoration to randomness. To cope with the fast restoration

to randomness, one possibility is to compute exactly the initial distribution of the bunch in

the space-charge modified rf bucket right at transition and populate the bunch according

to a Hammersley sequence. In this way, the tracking of the bunch particles across the

negative-mass unstable period, which is usually of the order of one synchrotron period,

may reveal the reliable growth from the correct Schottky noise level.

16.3 SELF-BUNCHING MODEL

Microwave instability can be viewed as self-bunching. The beam current Ipk, seeing

the impedance ZI , gives rise to an rf voltage IpkZI , and creates a self-bunching rf bucket
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Figure 16.8: Plot of rms fluctuation of excess particles per bunch versus num-
ber of synchrotron rotations, showing the rapid loss of Hammersley statistics and
restoration to randomness.

with an energy half height

∆E

E
=

(
2β2eIpkZI
πηnmaxγE0

)1
2

, (16.85)

where nmax denotes the revolution harmonic of the impedance. If this bucket height is less

than the energy spread of the bunch, there will not be any extra energy spread and the

bunch will be stable. If the bucket height is larger than the energy spread of the bunch,

the bunch particles will travel outside the original energy boundary of the bunch, giving

rise to an emittance growth as a result of filamentation. In fact, this is just another way

of expressing the Keil-Schnell criterion [14].

Here, we want to make the conjecture that this self-bunching bucket height determines

the final energy spread of the bunch. Inside this bucket, the angular synchrotron frequency

is given by

ωs =

(
nmaxηIpkZI
2πβ2γE0

) 1
2

ω0 . (16.86)

Since the frequency-flip parameter η is changing rapidly at transition, we substitute

η

γ
=

2γ̇t
γ4
t

t . (16.87)



16.3. SELF-BUNCHING MODEL 16-29

Integrating Eq. (16.86), we obtain the time to reach a quarter of a synchrotron oscillation

from the moment of transition crossing as

T ≈
(

3π

4

)2
3
(

πE0β2
t γ

4
t

nmaxIpkZI γ̇tω2
0

)1
3

. (16.88)

This will be the time required for some particles to reach the top of the bucket. Of

course, the height of the self-bunching bucket is also changing, and the value of ηγ at this

moment should be substituted in Eq. (16.85). At this moment, the unperturbed energy

spread of an elliptical bunch with emittance S and without space-charge distortion is,

from Eq. (15.79),

∆E

E
=

Γ
(

1
3

)
21/231/6π

(
Sβ2

t γ
2
t

E0T 2
c γ̇t

) 1
2

(
1− π

31/6Γ2
(

1
3

) T
Tc

)
, (16.89)

where

Tc =

(
β2
t γ

4
t | tan φs|

2hω0γ̇2
t

) 1
3

. (16.90)

is the non-adiabatic time. The correction in the second term of Eq. (16.89) is usually small.

Thus, the growth in energy spread can be computed easily, and assuming filamentation

the growth in emittance can be obtained. This estimate will be valid if T is less than

the time to regain stability. The growths for some situations of the Fermilab Main Ring

are given in Table 16.4. The corresponding growths obtained from the growth-at-cutoff

model are also listed for comparison.

There is at present no reliable simulation of emittance growth. Experimental mea-

surements are also marred by other mechanisms, such as bunch tumbling due to bunch-

length mismatch, particles with different momentum crossing transition at different time,

etc. Another example at the Fermilab Main Ring is that the bunch emittance usually

grows to such a value that scraping occurs. Therefore, it is hard to judge at this moment

the reliability of this crude model. On the other hand, this model can certainly be im-

proved to a certain degree by including, for example, the space-charge distortion of the

bunch shape, the tilt effect in phase space near transition, as well as the mechanism of

overshoot when stability is regained.



16-30 CHAPTER 16. NEGATIVE-MASS INSTABILITY

Table 16.4: Growth of emittance for the self-bunching and growth-at-cutoff models.

γ̇t Nb Initial Bunch Emittance Fractional Emittance Growth

(s−1) (1010) (eV-s) Self-Bunching Model Cutoff Model

90 2.2 0.05 4.09 4.06

90 2.2 0.06 3.03 2.43

90 2.2 0.07 2.35 1.83

90 2.2 0.08 1.89 1.54

90 2.2 0.09 1.52 1.38

120 4.0 0.06 5.32 8.16

120 4.0 0.07 4.12 4.17

120 4.0 0.08 3.31 2.78

120 4.0 0.09 2.72 2.14

120 4.0 0.10 2.29 1.80

16.4 EXERCISES

16.1. The Alternating Gradient Synchrotron (AGS) at Brookhaven is a proton ring with a

circumference of 807.11 m. The beam crosses transition at γt = 8.8 with γ̇t = 63 s−1.

The rf harmonic is h = 12 and the synchronous phase is φs = 27.3◦.

(1) With beam pipe radius 2.356 cm and beam radius 0.5 cm, compute the space-

charge impedance at transition and the frequency at which the integrated negative-

mass growth is at a maximum.

(2) For a bunch with‡ 1× 1012 protons, compute the critical stability parameter c

defined in Eq. (16.69) for various bunch areas. Determine the smallest bunch area to

avoid negative-mass blowup. Repeat the computation with the intensity of 3× 1012

protons.

16.2. It is possible that the AGS described in the previous problem is dominated by

a broad-band impedance of Z‖0/n ≈ 20 Ω at 1.5 GHz. Use the simplified model

developed in Sec. 16.1.1 to compute the total growth across transition. The bunch

area is assumed to be 6 eV-s.

‡The AGS is currently running at the intensity of ∼ 1 × 1013 particles per bunch with a transition
jump. Here, we are estimating the growth without transition jump.
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